Technical datasheet allPHA

color**Fabb**

Date of issue: Version: September 18th , 2023 v1.0

Description

Our allPHA 3D printing filament (pronounced as Alpha) is the ultimate bioplastic. **P**olyHydroxy **A**lkanoates (PHA) is created by a natural occurring process called fermentation. By feeding bacteria natural sugars and oils, the bacteria create "fat" cells (the PHA). The best thing about PHA? Microorganisms can eat it again at the end of the product's life.

allPHA is 100% biobased and 100% biodegradable in any biotope, without leaving microplastics.

allPHA is a great material for any project which requires a more sustainable approach. With various endof-life options, and an inherent fade-into-nature property, allPHA is a truly circular material.

Typical Properties

Mechanical Properties - 3D Printed

	Method	Value	Unit
Youngs Modulus	Tensile, ISO 527-1A	2500	MPa
Tensile Strength	Tensile, ISO 527-1A	26	MPa
Elongation at break	Tensile, ISO 527-1A	4.5	%
Flexural Modulus	Flexural, ISO 178	1820	MPa
Flexural Strength	Flexural, ISO 178	41	MPa
Impact Strength	Charpy Notch, ISO 179	3.4	kJ/m ²
Hardness	Shore D, ISO 7619	62	Shore D

Mechanical Properties – Injection Molded*

	Method	Value	Unit
Youngs Modulus	Tensile, ISO 527-1A	1950	MPa
Tensile Strength	Tensile, ISO 527-1A	25	MPa
Elongation at break	Tensile, ISO 527-1A	10.4	%
Flexural Modulus	Flexural, ISO 178	1760	MPa
Flexural Strength	Flexural, ISO 178	41	MPa
Charpy Impact	Charpy Notch, ISO 179	5.9	kJ/m ²
Strength			
Density	ISO 1183	N/A	g/cm ³

Thermal Properties*

	Method	Value	Unit
Glass Transition Temp.	DSC, ISO 11357	N/A	°C
Melting Temp.	DSC, ISO 11357	N/A	°C
Decomposition Temp.	TGA, ISO 11358	N/A	°C
Heat Deflection Temp.	HDT-B, ISO 75	130	°C
Melt Flow Index	MFI, (210°C/2.16 kg), ISO 1133-A	N/A	g/10min
Melt Flow Index	MFI, (190°C/1,16 kg), ISO 1133-A	N/A	g/10 min

*These results are obtained from the information provided by the supplier of the raw material

colorFabb B.V. Bremweg 7 5951 DK Belfeld The Netherlands T +31 (0)77 - 4664015 F +31 (0)77 - 3971414 E sales@colorfabb.com

I colorfabb.com

KvK nr: 53498607 VAT nr: NL850902770B01 IBAN: NL54RABO0151849188 BIC: RABONL2U

Technical datasheet allPHA

Date of issue: Version: September 18th, 2023 v1.0

Filament Specifications

	Unit		
Diameter	mm	1.75	2.85
Max. roundness deviation	mm	± 0.05	±0.1
Net. Filament weight	g	750	750

Guideline for print settings

	Unit	
Nozzle Temp.	°C	190-200
Bed Temp.	°C	0 / RT / not heated
Bed / surface modification	-	3DLac / Diluted wood glue
Active cooling fan	%	100**
Print Speed	mm/s	40-80
Layer Height	mm	0.1/0.27***

**On the second or third layer

*** For 0.4 mm nozzle

Notes

The reported properties are an average of a batch of 3D specimens.

Contrary to most 3D printing materials, allPHA is best printed on a cold plate, so no active heating is required. A heating plate will induce crystallization, which leads to warping of the bottom layers. The specimens have been printed in XY plane, using 0.2 mm layer height, 100% infill, 0.4 mm nozzle, 200°C nozzle temperature and 0°C bed temperature.

Removal of 3D print

Bigger parts with large, flat bottom surface areas can adhere quite strong to the surface, glass / PEI, or flexplate. In this case, it is advised to heat up the plate to 90°C and wait roughly 15 minutes for the bottom layer to heat through. The heat induces crystallization, which makes it easier for the 3D printed part to release from the plate. With the surface still hot, you need to carefully release the model with a sharp and thin scraper, and make your way underneath the model all around.

Smaller parts with less bottom surface will release easier, especially if the brim is not used. You can still use the same technique as described above if the 3D printed part adheres too much, or if it is very delicate.

Disclaimer

The product- and technical information provided in this datasheet is correct to the best of our knowledge. The information given is provided as a guidance for good use, handling and processing, and is not to be considered as a quality specification. The information only relates to the specific product and the material properties.

colorFabb B.V. Bremweg 7 5951 DK Belfeld The Netherlands T +31(0)77 - 4664015 F +31(0)77 - 3971414 E sales@colorfabb.com I colorfabb.com

KvK nr: 53498607 VAT nr: NL850902770B01 IBAN: NL54RABO0151849188 BIC: RABONL2U